
 
 

PLEASE SCROLL DOWN FOR ARTICLE

!"#$%&'(#)*+%,&$%-.,/*.&-+-%012%3456&57%8(9:"&/+;
</2%=>%?5*1%=@>@
A))+$$%-+(&#*$2%A))+$$%4+(&#*$2%3$50$)'#:(#./%/5B0+'%C=DEFECGC;
H50*#$"+'%H$1)".*.I1%H'+$$
J/6.'B&%K(-%L+I#$(+'+-%#/%M/I*&/-%&/-%N&*+$%L+I#$(+'+-%O5B0+'2%>@P=CGD%L+I#$(+'+-%.66#)+2%Q.'(#B+'%R.5$+7%FPS
D>%Q.'(#B+'%8('++(7%K./-./%N>!%F?R7%TU

M5'.:+&/%?.5'/&*%.6%V.I/#(#W+%H$1)".*.I1
H50*#)&(#./%-+(&#*$7%#/)*5-#/I%#/$('5)(#./$%6.'%&5(".'$%&/-%$50$)'#:(#./%#/6.'B&(#./2
"((:2XX,,,Y#/6.'B&,.'*-Y).BX$B::X(#(*+Z)./(+/([(P>FPFDGCE

A%-+W+*.:B+/(&*%:+'$:+)(#W+%./%W#$5&*%,.'-%'+).I/#(#./2%O+,%+W#-+/)+
&/-%&%$+*6S.'I&/#$#/I%B.-+*
8(9:"&/+%456&5&\%]+'/&'-%K9(90\%V*&5-+%!.5^+(&\%R+'W9%_*.(#/)\%?."&//+$%VY%`#+I*+'&\%?./&("&/
_'&#/I+'&
&%A#aSQ&'$+#**+%T/#W+'$#(17%&/-%VOL87%Q&'$+#**+7%b'&/)+%0%T/#W+'$#(1%.6%K1./7%K1./7%b'&/)+%)%VOL87
Q&'$+#**+7%&/-%T/#W+'$#(1%.6%!.5*./7%!.5*./7%b'&/)+

b#'$(%:50*#$"+-%./2%@G%b+0'5&'1%=@>@

!.%)#(+%("#$%A'(#)*+%456&57%8(9:"&/+%7%K9(97%]+'/&'-%7%!.5^+(7%V*&5-+%7%_*.(#/7%R+'W9%7%`#+I*+'7%?."&//+$%VY%&/-%_'&#/I+'7
?./&("&/c=@>@d%eA%-+W+*.:B+/(&*%:+'$:+)(#W+%./%W#$5&*%,.'-%'+).I/#(#./2%O+,%+W#-+/)+%&/-%&%$+*6S.'I&/#$#/I%B.-+*e7
M5'.:+&/%?.5'/&*%.6%V.I/#(#W+%H$1)".*.I17%==2%G7%EEC%f%ECD7%b#'$(%:50*#$"+-%./2%@G%b+0'5&'1%=@>@%c#b#'$(d
!.%*#/g%(.%("#$%A'(#)*+2%4<J2%>@Y>@h@X@CGD>DD@C@F@F>=F@
TLK2%"((:2XX-aY-.#Y.'IX>@Y>@h@X@CGD>DD@C@F@F>=F@

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/terms-and-conditions-of-access.pdf
http://www.informaworld.com/smpp/title~content=t713734596
http://dx.doi.org/10.1080/09541440903031230


A developmental perspective on visual word recognition:

New evidence and a self-organising model
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This study investigated the developmental trajectory of two marker effects of visual
word recognition, word frequency, and orthographic neighbourhood effects, in
French primary school children from Grades 1 to 5. Frequency and neighbourhood
size were estimated using a realistic developmental database, which also allowed us
to control for the effects of age-of-acquisition. A lexical decision task was used
because the focus of this study was orthographic development. The results showed
that frequency had clear effects that diminished with development, whereas
orthographic neighbourhood had no significant influence at either grade. A self-
organising neural network was trained on the realistic developmental corpus. The
model successfully simulated the overall pattern found with children, including
the absence of neighbourhood size effects. The self-organising neural network
outperformed the classic interactive activation model in which frequency effects are
simulated in a static way. These results highlight the potentially important role of
unsupervised learning for the development of orthographic word forms.
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Keywords: Orthographic neighbourhood; Reading acquisition; Self-organising
map; Word frequency; Implicit learning.

The aim of the present study was to provide a behavioural and computa-
tional investigation of the development of orthographic representations
during reading acquisition. As marker effects of orthographic development,
we investigated word frequency and orthographic neighbourhood size. The
word frequency manipulation was chosen as a standard measure of lexical
influences during reading, whereas orthographic neighbourhood size was
chosen to provide a more direct measure of orthographic influences as
opposed to more general lexical influences (including phonology and
semantics, for example). These marker effects are discussed next.

WORD FREQUENCY

The word frequency effect is perhaps the most stable phenomenon in
psycholinguistics. It reflects the fact that words that occur more frequently
in a given language are processed more rapidly and more accurately than
words that occur less frequently (Balota & Chumbley, 1984; Connine,
Mullennix, Shernoff, & Yelen, 1990; Forster & Chambers, 1973; Rubenstein,
Garfield, & Millikan, 1970). This effect has consistently been found in a
variety of tasks (lexical decision, naming, perceptual identification, semantic
categorisation; for review, see Monsell, 1991). The word frequency effect has
become one of the hallmark effects of word recognition that any model must
account for.

In the earliest models of word recognition, frequency effects were
implemented as either frequency-dependent thresholds, frequency-dependent
resting level activations, or frequency-dependent search priorities (Forster,
1976; McClelland & Rumelhart, 1981; Morton, 1969; Paap, Newsome,
McDonald, & Schvaneveldt, 1982). The frequency effect does not naturally
‘‘fall out’’ of these models*it is put there to begin with (see Norris, 2006, for
discussion of this point). In other words, frequency effects in these models
are static. Clearly, this is a major limitation of these models because, in real
life, frequency effects likely reflect a dynamic reactivity following actual
encounters with written and/or spoken words. Therefore, accounting for
frequency effects with static mechanisms is, at best, an approximation. In this
respect, more recent connectionist models (e.g., Harm & Seidenberg, 1999,
2004; Plaut, McClelland, Seidenberg, & Patterson, 1996; Seidenberg &
McClelland, 1989; Zorzi, Houghton, & Butterworth, 1998b) present a major
improvement over traditional word recognition models because frequency
effects are not hard-wired but result from simulated learning. These models

670 DUFAU ET AL.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
D
u
f
a
u
,
 
S
t
é
p
h
a
n
e
]
 
A
t
:
 
1
1
:
2
5
 
2
1
 
J
u
l
y
 
2
0
1
0



are confronted with a training corpus selected to reflect as accurately as
possible the frequency of occurrence of words in written language. Thus, high-
frequency words are ‘‘seen’’ more often by the network than low-frequency
words, and it is the frequency of presentation of a given word to the network
that determines the connection strengths linking the different units that
represent that word in the network.

There are however several limitations with current connectionist model-
ling, mostly tied to the widespread use of backpropagation (e.g., Harm &
Seidenberg, 1999, 2004; Plaut et al., 1996; Seidenberg & McClelland, 1989;
Zevin & Seidenberg, 2002). First, such models necessitate far greater
amounts of training compared with the estimated exposure of children to
text during reading acquisition (Hutzler, Ziegler, Perry, Wimmer, & Zorzi,
2004). For example, Saragi, Nation, and Meister (1978) found that words
presented fewer than six times were only learned by half of their subjects, but
that performance jumped to 93% after six presentations or more (see Nagy,
Herman, & Anderson, 1985; and Rott, 1999, for similar estimates). Second,
these models are subject to ‘‘catastrophic forgetting’’ (McCloskey & Cohen,
1989). That is, the network ‘‘forgets’’ previously learned items if these items
are not continuously interleaved in the presentation of new items. This arises
from the distributed nature of representations in the hidden-unit layer of
such models. Third, these models use a ‘‘supervised’’ learning algorithm, and
it is clear that the learning of orthographic representations, as opposed to the
explicit learning of grapheme!phoneme correspondences, must at least
partially occur in a self-organising and unsupervised fashion (Share, 1995).
Finally, current connectionist models are trained using lexical databases
selected to be representative of adult reading habits. Therefore, these
databases do not fully reflect the written corpus that children are actually
exposed to during their primary school years.

The ideal way to test connectionist learning models would be to use
developmental data (Grainger & Jacobs, 1998; Harm & Seidenberg, 1999;
Hutzler et al., 2004; Jacobs & Grainger, 1994; Zorzi, Houghton, &
Butterworth, 1998a). Given our focus on the development of orthographic
representations, we were particularly interested in examining effects of
frequency and neighbourhood in a task that emphasises orthographic
processing, such as lexical decision, rather than reading aloud tasks.
However, most previous studies have investigated the development of
frequency effects in reading aloud (e.g., Ducrot, Lété, Sprenger-Charolles,
Pynte, & Billard, 2003; Frith, Wimmer, & Landerl, 1998; Sprenger-
Charolles, Siegel, & Bonnet, 1998). Only a few studies have actually
investigated word frequency effects in children using the lexical decision
task. For example, Burani, Marcolini, and Stella (2002) found that
frequency effects were present at each grade level and their size (about
2%) did not vary across grade. However, the Burani et al. study only
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investigated frequency effects in children aged 8!10 years (i.e., Grades 3!5),
whereas we were interested in the development of the frequency effect from
the very beginning of learning to read (Grade 1).

NEIGHBOURHOOD EFFECTS

The second marker effect of interest was the orthographic neighbourhood
effect. Orthographic neighbours are words that share all but one letter while
respecting letter position (Coltheart, Davelaar, Jonasson, & Besner, 1977).
The neighbourhood size of a word is the number of orthographic neighbours
of that word (e.g., ‘‘word’’ has six neighbours: cord, ford, lord, ward, work,
worm). This is an important variable in modelling because it has effects both
at the lexical and sublexical level. At the sublexical level, words or nonwords
with many neighbours are processed more quickly because they typically
have more frequent sublexical units and orthography!phonology correspon-
dences (e.g., Ziegler & Perry, 1998) or they benefit from stronger lexical
feedback (Andrews, 1997). At the lexical level, however, words with many
neighbours might be processed more slowly because they suffer from lexical
competition and lateral inhibition (Grainger, 1990; Grainger, O’Regan,
Jacobs, & Segui, 1989). Indeed, both types of effects have been reported
previously. In tasks that emphasise sublexical processing, such as reading
aloud, neighbourhood effects have been found to be facilitatory (e.g.,
Andrews, 1989, 1992). In tasks that emphasise lexical processing, such as
lexical decision or perceptual identification, some studies indeed reported
inhibitory neighbourhood effects (e.g., Carreiras, Perea, & Grainger, 1997;
Grainger & Segui, 1990; Holcomb, Grainger, & O’Rourke, 2002; Segui &
Grainger, 1990), whereas others still reported facilitatory effects (e.g.,
Andrews, 1989; Ziegler & Perry, 1998). Whether facilitation or inhibition
is obtained probably depends on a number of factors, such as the balance
between lexical and sublexical processing, task, language, and list composi-
tion (for reviews, see Andrews, 1997; Grainger & Jacobs, 1996).

A few studies have investigated neighbourhood effects during reading
acquisition. One particularly relevant study (Laxon, Coltheart, & Keating,
1988) investigated the neighbourhood effect in naming and lexical decision
in second and third grade children. They showed that neighbourhood size
had a facilitatory effect both in naming and lexical decision, with improved
performance to words with many neighbours compared with words with few
neighbours. Similar results were obtained by Laxon, Gallagher, and
Masterson (2002), who studied children from 5 to 7 years old in a naming
task. Finally, Treiman, Goswami, and Bruck (1990) also showed that
nonwords with many rhyme neighbours were pronounced more accurately
than nonwords with fewer rhyme neighbours by children in Grades 1 and 3.
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Together then, it appears that developmental studies so far have reported
facilitatory neighbourhood effects. However, most of these studies used
naming tasks and limited the comparison to two age groups.

GOALS OF THE PRESENT STUDY

The aim of the present study was to provide a behavioural and computa-
tional investigation of the development of word frequency and orthographic
neighbourhood size effects during reading acquisition. As outlined earlier,
we will focus on the kind of implicit orthographic learning that is likely to
happen in an unsupervised and self-organising fashion. To specifically
investigate orthographic development rather than reading aloud, we
employed the lexical decision task. It is well-established that the lexical
decision task is much more sensitive to orthographic variables than the
reading aloud task (Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004;
Grainger & Jacobs, 1996). Use of the lexical decision task is further
motivated by the fact that the vast majority of typical adult reading activity
concerns silent reading, not reading aloud.

From a purely methodological perspective, the present study goes beyond
previous studies in a number of ways. First, whereas previous studies
typically compared no more than two age groups, the present study collected
data from Grade 1 to Grade 5. Second, frequency and neighbourhood
estimates in previous developmental studies were mostly based on adult
word counts (for a notable exception, see Ducrot et al., 2003). Instead, in the
present study, word frequency and neighbourhood size measures were
estimated for each grade using a developmental database based on textbooks
that are currently used in French primary education for teaching reading
(Manulex: Lété, Sprenger-Charolles, & Colé, 2004). Third, the use of this
developmental database also allowed us to control for the effects of age-of-
acquisition (AoA).

Indeed, it has been argued that empirical observations of word frequency
effects do not actually reflect an influence of frequency of exposure to words
(as will be argued here), but rather the influence of the age at which these
words were acquired (e.g., Morrison & Ellis, 1995, see Johnston & Barry,
2006, for review). Nevertheless, a number of studies have shown robust
effects of word frequency when AoA is matched across frequency classes
(e.g., Bonin, Chalard, Méot, & Fayol, 2001; Brysbaert, 1996). An important
aspect of Brysbaert’s study is that it used an arguably more realistic measure
of AoA, based on teachers’ ratings of whether or not children in Grade 1
were expected to know a word or not (the majority of studies use adult
ratings of AoA). On the other side of the coin, Zevin and Seidenberg (2002)
criticised prior research reporting evidence for effects of AoA as having
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confounded AoAwith cumulative frequency. That is, the correct measure of
word frequency would not be a single static measure as provided by counts
of occurrences in corpora of reading material mostly seen by adults, but
rather a cumulative measure of the number of times a word is likely to have
been encountered from childhood up to the time of testing in a laboratory
experiment. Of course, AoA could still have an influence over and above the
effects of cumulative frequency (e.g., Ghyselinck, Lewis, & Brysbaert, 2004),
but that is not the object of the present study. Instead, in the present study,
AoA was strictly controlled, in that all the words that were tested were
already present in the reading textbooks for Grade 1.

Finally, from a theoretical perspective, the present study provides one of
the first evaluations of unsupervised self-organising neural networks in the
modelling of implicit learning of orthographic representations. Furthermore,
whereas previous connectionist models were typically trained on an adult
database, the present network was trained on the same realistic training
corpus that was used to establish the frequency norms. Thus, the model was
trained on a corpus that contains the words that children actually encounter
during primary school. The network was then confronted with the same
words that were used for the experiment. We will first present the experiment
and results and then the implementation of the model and the simulations.

EXPERIMENT

Method

Participants. One hundred and forty children were pretested: 25 were
first graders (G1), 24 were second graders (G2), 25 were third graders (G3),
41 were fourth graders (G4), and 25 were fifth graders (G5). Participants
retained for data analysis were selected on the basis of their reading level,
which was assessed with a standardised reading test (Alouette: Lefavrais,
1965). Only children at the expected reading level for their grade were
retained. Following this criterion, 20 children in each grade were retained,
except in fourth grade where only 10 children had the appropriate reading
level. Mean reading age was 6 years 11 months in G1, 7 years 6 months in
G2, 8 years 6 months in G3, 9 years 9 months in G4, and 10 years 6 months
in G5.

Materials. A set of fifty-six words of 4 and 5 letters in length were
selected from Manulex (Lété et al., 2004). Manulex is a computerised lexical
database that provides frequency counts of nonlemmatised and lemmatised
words compiled from the 1.9 million words found in the main French
primary school reading textbooks. Manulex provides frequency counts for
Grade 1, Grade 2, Grades 3!5 collapsed (because frequency counts vary
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little across these grades), and all grades combined (G1!G5). Words were
selected to fill the four conditions created by crossing word frequency (high
vs. low, hereafter noted HF and LF, respectively) with neighbourhood size
(high vs. low, hereafter noted HN and LN, respectively). There were 14
words in each category. HF targets averaged 517 occurrences per million
words (G1!G5 level values), and LF targets averaged 20 occurrences per
million words. HN targets averaged seven orthographic neighbours and LN
targets averaged one orthographic neighbour. Neighbourhood sizes were
determined using the standard N metric (Coltheart et al., 1977) applied to
the Grade 1!5 corpus (Manulex), with the additional constraint that a given
word’s classification (HN vs. LN) did not change as a function of estimated
vocabulary knowledge at each grade. A set of 28 nonwords (pseudowords)
were constructed that formed pronounceable, orthographically legal letter
strings, and a set of 28 unpronounceable nonwords formed of random
combinations of consonants. Each participant saw the entire set of 112
stimuli.

Procedure and apparatus. Children were seated at a fixed distance of
60 cm in front of a 17-inch colour monitor connected to a Pentium III
laptop computer running DMDX software (Forster & Forster, 2003). The
stimuli were displayed in lowercase in 24-point Courier font with a 640"480
resolution. Children were tested individually in a single 25-minute session.
Each trial consisted of the following sequence of events. The child was
first instructed to look at a fixation point (‘‘#’’) at the beginning of each
trial. After 1000 ms, the fixation point was replaced by a target centred on
the screen. The target remained on the screen until the child responded by
selecting the word-response (right shift key) or the nonword-response (left
shift key on the keyboard). He/she was instructed to respond as quickly as
possible, while avoiding errors. The targets were presented in a different
random order to each participant. There was one block of 28 practice trials
followed by four blocks of 28 experimental trials.

Results

Response times (RTs) and mean percentage of errors to words were
calculated across items (for the by-participant analysis) and across partici-
pants (for the by-item analysis) for each grade level and for each
experimental condition. Trials with RTs below 450 ms or above two
standard deviations of a participant’s mean per condition were discarded
from the analysis (3.78% of the total trials). A 5 (grade level)"2 (lexical
frequency)"2 (neighbourhood size) ANOVA was conducted with partici-
pants (F1) and items (F2) as random factors. Lexical frequency and
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neighbourhood size were treated as a between-item factor in the item
analysis. RTs and error percentages are shown in Table 1 (see Figures 2 and 3
for corresponding plots). For a clearer view of the results, simple effects and
interactions in the next section are only reported when both F1 and F2 ratios
were significant.

Response times. There was a main effect of grade, F1(4, 85)$54.8,
pB.001; F2(4, 208)$417.9, pB.001, with RTs decreasing as reading skills
increased. Children in Grade 5 were about three times faster making lexical
decisions than children in Grade 1. A main effect of frequency indicated
that high frequency words were recognised faster than low frequency words
(1357 vs. 1735 ms, respectively), F1(1, 85)$156.6, pB.001; F2(1, 52)$56.5,
pB.001. There was also a significant Grade"Frequency interaction,
F1(4, 85)$17.9, pB.001; F2(4, 208)$7.8, pB.001, reflecting the fact that
the size of the frequency effect diminished with age. The main effect of
neighbourhood size was not significant (HN$1450 ms, LN$1496 ms) and
there were no significant interactions with this variable (FsB1).

Errors. As expected, the ANOVA revealed a main effect of grade level,
F1(4, 85)$25.20, pB.001; F2(4, 208)$52.80, pB.001, indicating that
errors increased with age: There was 34% of errors in G1, 22% in G2, 14%
in G3, 12% in G4, and 9% in G5. High-frequency words produced fewer
errors than low-frequency words (8% vs. 28%, respectively), F1(1, 85)$
214.30, pB.001; F2(1, 52)$32.33, pB.001. A significant interaction was
found between grade level and frequency, F1(4, 85)$6.10, pB.001; F2(4,
208)$7.49, pB.001, indicating that the frequency effect decreased as age
increased. The main effect of neighbourhood size was not significant (HN$
16%, LN$19%) and there were no significant interactions with this variable
(FsB1).

Discussion

The present experiment examined effects of word frequency and ortho-
graphic neighbourhood size in primary school children from Grade 1 to
grade 5. The results of our experiment showed a decrease in the size of the
word frequency effect from Grade 1 to Grade 5, on RTs and errors. On
the other hand, orthographic neighbourhood size did not significantly
influence children’s performance.

The word frequency effect observed in first graders in the present
experiment was of similar magnitude to the one previously reported by
Ducrot et al. (2003). These data therefore suggest that orthographic
development, as measured by lexical decision performance, is sensitive to
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TABLE 1
Behavioural results. Mean response times (RT, in milliseconds) and error percentages (Err) on words from Grade 1 (G1) to Grade 5

(G5), with standard deviations in parentheses

HF-HN HF-LN LF-HN LF-LN Marginal mean

RT Err RT Err RT Err RT Err RT Err

G1 2655 16 2389 20 3159 44 3491 53 2924 33

(964) (12) (717) (16) (979) (18) (1150) (16)

G2 1325 8 1420 9 1815 30 1976 35 1634 21

(459) (6) (559) (9) (723) (17) (716) (19)

G3 873 3 884 5 1091 21 1122 25 993 14

(189) (5) (157) (8) (262) (11) (262) (14)

G4 856 4 848 5 1026 19 1059 17 947 11

(161) (5) (126) (8) (306) (10) (146) (13)

G5 772 1 790 5 930 16 980 14 868 9

(106) (3) (112) (5) (145) (12) (159) (12)

HF$high frequency; LF$low frequency; HN$high neighbourhood density; LN$low neighbourhood density.

D
E
V
E
L
O
P
M
E
N
T
O
F
V
IS
U
A
L
W

O
R
D

R
E
C
O
G
N
IT
IO

N
6
7
7

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
D
u
f
a
u
,
 
S
t
é
p
h
a
n
e
]
 
A
t
:
 
1
1
:
2
5
 
2
1
 
J
u
l
y
 
2
0
1
0



the printed frequency of words from the very beginning of reading
development. Although there were no significant effects of orthographic
neighbourhood, inspection of Table 1 shows that there was a relatively
systematic numerical advantage in both RTs and errors for words with many
orthographic neighbours relative to words with few orthographic neigh-
bours, which is in line with prior research (e.g., Laxon et al., 1988, 2002).
The fragile nature of the classic neighbourhood effect in the lexical decision
task is consistent with recent adult studies (Grainger, Muneaux, Farioli &
Ziegler, 2005; Mulatti, Reynolds, & Besner, 2006; Ziegler & Perry, 1998). In
the present study, the neighbourhood effect appeared to be limited to the
younger readers, although the grade by neighbourhood interaction failed to
reach significance. The facilitatory nature of the N effect in beginning
readers found in prior research, and numerically present in our experiment,
could reflect the crucial role of reading by analogy in early reading
development (Goswami, 1993; Goswami & Bryant, 1990, 1992).

SIMULATION

The developmental data described above provide us with ideal material to
test our self-organising neural network model of orthographic learning. It is
important to note at the outset that we chose not to simulate phonological
recoding or the explicit learning of grapheme!phoneme correspondences
(for examples of work on this particular issue, see Hutzler et al., 2004, or
Zorzi et al., 1998a). The focus of the present modelling work was on the
implicit learning of orthographic representations as an essential, and until
now largely ignored, component of the process of learning to read. Thus, our
modelling approach consisted of specifying and implementing a set of
realistic mechanisms and principles that may underlie the acquisition and
representation of orthographic knowledge about words. Our general
approach is motivated by the assumption that the spaces surrounding
printed words enable accurate association of letter-level information with a
unique whole-word orthographic representation, and that this process
proceeds largely without explicit supervision. Self-organising maps (SOM;
Kohonen, 1982) have the interesting property of being able to represent
certain biological cortical activities such as lateral inhibition or redistribution
of synaptic resources that occur in an unsupervised manner (Kohonen, 1982;
Miikkulainen, 1990). In psycholinguistics, SOMs have been previously
applied to simulate phonological development in children (Li, Farkas, &
MacWhinney, 2004) or category-specific deficits in semantic representations
(Zorzi, Perry, Ziegler & Coltheart, 1999).

Mathematically, SOMs can be seen as a tool for mapping a multi-
dimensional data set onto a much lower dimensional space. An important
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quality of this mapping process is that frequency information is retained. We
therefore expect to observe a word frequency effect during word learning. In
addition, similarities across different input vectors are coded in the feature
map. The absence of an effect of orthographic neighbourhood in the
empirical data might therefore be a problem for our model.

SOMs offer several advantages relative to prior attempts to simulate word
learning using backpropagation, over and above the fact that they learn
without supervision. First, they require much fewer presentations for
successful learning, and as will be shown in the present study, the numbers
involved are more in line with the estimated exposure of children to print
during reading acquisition. Second, they do not suffer from catastrophic
forgetting. The localist nature of higher level representations in such models
protects them against interference from subsequent learning of different
items.

Method

Learning base. Three sets of four- and five-letter words were extracted
from Manulex (Lété et al., 2004) to serve as the training corpus. The Grade 1
set was selected to represent exposure to print in first grade primary
education in France, and consisted of 54,014 occurrences of 1198 different
words appearing in Grade 1 reading textbooks. The Grade 2 set reflected
exposure in Grade 2 and was composed of 54,341 occurrences with 1511
different words. The Grade 3# training set reflected exposure in Grades 3!5
and had 64,007 occurrences with 2404 different words at each grade level.
The same training set was used in Grades 3!5 because Manulex only
provides frequency counts for these three grade levels grouped together.

Input coding. SOMs can handle a large variety of different kinds of
inputs (Miikkulainen et al., 2005), and one important quality is their ability
to handle ‘‘natural’’ or realistic inputs. The starting point of the present
model is an orthographic coding scheme that reflects the kind of flexible,
relative-position coding of letters in words that has been highlighted in
recent behavioural experiments (e.g., Grainger, Granier, Farioli, van Assche,
& van Heuven, 2006; Perea & Lupker, 2004; Schoonbaert & Grainger, 2004;
van Assche & Grainger, 2006; see Grainger, 2008, for review). Open bigram
coding (Grainger & van Heuven, 2003; Grainger & Whitney, 2004)
represents one possible representation of such relative-position coding (see
Dehaene, Cohen, Sigman, & Vinckier, 2005, for an account of how open
bigrams can be derived from visual input). Open bigrams are formed of
adjacent and nonadjacent pairs of letters in a given order (e.g., the bigram
‘‘ab’’ implies that the letter ‘‘a’’ is before the letter ‘‘b’’ in the input string).
This coding scheme provides accurate order information in the absence of
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precise, length-dependent, position information. For example, the input of
the word TABLE will be represented by the following open bigrams:
(TA, TB, TL, TE, AB, AL, AE, BL, BE, LE). In the specific implementation
of open-bigram coding used in the present study, two additional steps were
taken. First, each bigram activation value was modulated by the number of
letters separating the two letters of the bigram in the stimulus word. The
factor was equal to 1 for TA, AB, BL, LE (adjacent letters), equal to 0.6 for
TB, AL, BE (letters separated by one letter), equal to 0.1 for TL and AE
(letters separated by two letters), and equal to 0 for TE (letters separated by
more than two letters). This corresponds to the Overlap Open Bigram model
described and tested by Grainger et al. (2006). Second, bigram activation
was modified as a function of letter visibility using the empirically
determined values provided by Stevens and Grainger (2003). The bigram
visibility value was the mean of the visibility values of each constituent letter.
For the example stimulus TABLE the letter visibilities were T (0.78), A
(0.70), B (0.72), L (0.67), E (0.65), and so bigram TA had a visibility of 0.74.1

The letters used were the 41 letters of lowercase accented French (26 letters
of the Roman alphabet plus accented letters). This produced 1681
combinations of paired letters arranged in a vector. This vector [AA, AB,
AC, . . . , ZX, ZY, ZZ] was associated with the calculated values of the active
bigrams of a given input stimulus and filled with zeros otherwise. Such a
vector will be referred to from now on as ‘‘bigram-word’’. This kind of input
defines a huge multidimensional input space, but several SOM applications
involve input spaces of this order of magnitude (e.g., WebSOM; Lagus,
Kaski, & Kohonen, 2004).

Architecture. The topology of the two dimensional map (word layer)
consisted of 100"100 units arranged in a grid. Each unit in this layer was
linked to its four map neighbours: North, East, South, West. Each map unit
was connected to all the input layer units described previously. A part of the
network is displayed in Figure 1. The dimension of the interlayer connection
matrix was [104, 1681], which allows the possibility of single coding for
10,000 different word representations, referred to from now on as ‘‘lexical
words’’. Before learning, each element of the interlayer connection matrix
(the weight matrix) was assigned a real value randomly chosen between
0 and 1.

Training phase. SOMs are data-driven models in the sense that the
learning algorithm is unsupervised. Therefore our SOM has the ability to

1 The weighting of bigram activation by empirical letter visibilities was motivated for extended

tests of the SOM that are not reported in the present study, and is not critical for the results of the

simulations presented here.
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learn incrementally from individual bigram-word presentation (i.e., sets of
bigrams corresponding to real words) without feedback. Each bigram word
presentation leads to connection weight modifications of the maximally
responding lexical word unit and its neighbours (see Figure 1). The map used
was two dimensional. At the beginning of the learning phase, each map unit
contained a random template (1681 real values within the range [0; 1], i.e., a
weight vector) against which an input (the bigram-word vector described
in the input coding section) was matched. When bigram words were
presented to the input layer, the algorithm computed in parallel the
difference between templates and input for all the map units. The map
unit that verified minjW-Xj, where W is a map unit weight vector and X the
input values, was selected as the winning unit. Its weights were updated
according to

Wt#1$Wt#a:(Wt%Xt); (1)

where a !R[0;1] and t the iteration step. The four neighbour unit weights were
updated according to

WN;t#1$WN;t#b:(WN;t%Xt); (2)

where WN represents the weights of a winning unit neighbour and b !
R[0;1]; bBa: The learning rates a and b were .95 and .5 at the beginning of
the learning phase, i.e., Grade 1 and Grade 2 training sets. These values were
changed to .8 and .3 respectively for the Grade 3!5 training set, which are
typical parameter settings (for a more detailed presentation of the SOM
algorithm and standard parameter settings see Kohonen, 1995). It is
important to note that the construction of the map was incremental. In
the first few hundreds of bigram word presentations, only central units
responded to the inputs. Due to the properties of the neighbourhood weight
updating, as learning progressed, responding units spread on the map so that
more and more bigram words were processed as unique input.

AA AB AC AD …

Figure 1. Illustration of full connectivity between the output map (grid of black points) and the

input bigram vector.
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To ensure a reproducible network response, each training set was
presented three times except for the Grade 3# set, which was presented
nine times (because this training set comprised Grades 3!5). By the end of
training up to Grade 5, a network had processed about 900,000 bigram word
occurrences. Bigram words in each training set were presented in random
order, and 120 networks were trained according to the procedure already
described (24 networks for each grade, which corresponds roughly to 1
network per child). Training was incremental such that networks for Grades
2 and above were extensions of the previously trained networks for the lower
grades.2

Test phase and model readout. The 120 networks were used to simulate
the performance of 24 children per grade. Model tests were carried out
at the end of the three epochs of training for the Grade 1 and Grade 2
training sets and at the end of the third, sixth, and ninth epoch of the
Grade 3# training set (Grade 3, Grade 4, and Grade 5 simulations,
respectively). The unique maps built at these particular epochs form a
representation of the orthographic lexicon of a child at the end of each
grade. In order to generate response read-out from the SOM in the form of
RTs and percent errors, the bigram-word weights of a given trained network
were introduced in a two-layered Interactive-Activation Model (IAM;
McClelland & Rumelhart, 1981) with open-bigrams and word representa-
tions. The main differences between the standard IAM and the one
implemented here are the following: (1) the use of bigrams instead of
letters, (2) the use of SOM weights for setting connection strengths between
bigrams and words, and (3) the absence of resting level activations of the
word units at the beginning of a trial. All other aspects of IAM described in
McClelland and Rumelhart (1981), including parameter values, were not
modified. Simulated reaction times and proportion of errors were then
obtained for the 56 words used in the behavioural experiment with the
SOM weights corresponding to training after Grades 1!5. RTs were
measured as number of cycles to reach a criterion activation level (average
asymptote minus 10% of this value), and errors were coded as trials on
which this criterion level was not reached (i.e., asymptotic activation was
lower than the criterion level3).

2 The training regime used in the present simulation study is arguably much closer to the real-

life exposure to print of children learning to read, compared with the training regimes that are

typically used with backpropagation networks.
3 Here we assume that beginning readers perform the lexical decision task as a word

identification task*respond ‘‘yes’’ when a word is recognised, and ‘‘no’’ otherwise.
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Simulation results

The simulation results are presented together with the human data in
Figure 2 (percentage errors) and Figure 3 (RTs) for both the frequency and
the neighbourhood effect. Because the error rates in the early grades are
quite high (around 50% for low-frequency words), the accuracy data are
probably more meaningful than the RT data.

The simulation results were analysed in exactly the same way as the human
data, that is, we performed an ANOVA with grade level, frequency, and
neighbourhood size as factors. TheANOVAwas performed on the itemmeans
(F2). This analysis revealed a main effect of grade on reaction time (RT) and
percentage errors (Err), F2(4, 208)$18.61, pB.0001; F2(4, 208)$29.12, pB
.0001, respectively, indicating that speed and accuracy both increased with
reading ability. A main effect of word frequency was found in both RTs and
percentage errors, F2(1, 52)$16.38, pB.001; F2(1, 52)$18.51, pB.001,
respectively. High frequency wordswere processed faster and more accurately
than low frequency words. These effects were qualified by a significant
interaction between grade and frequency in both RTs and percentage errors,
F2(4, 208)$6.03, pB.001; F2(4, 208)$6.60, pB.001, indicating that the
simulated frequency effect decreasedwith grade. Again, as in the human data,
neighbourhood density showed no significant effect, and there were no
significant interactions with this factor (all F2sB1).

Frequency effects in SOM and children

The SOM successfully simulated the developmental pattern of the word
frequency effect observed in children. In order to provide a direct
comparison of performance in the model and in children, the frequency
effect was transformed into a percentage gain in performance in HF words
compared with LF words. These percentage values, shown in Figure 4, were
entered into an ANOVA with grade and type of data (children vs. SOM) as
factors. An ANOVA was conducted with participants and simulations (F1)
as random factor. An analysis of the error data revealed main effects
of grade and type of data, F1(4, 200)$42.67, pB.0001; F1(1, 200)$15.02,
pB.001, and no interaction (F1B1). An analysis of the reaction time data
revealed a main effect of grade, F1(4, 200)$14.02, pB.0001, no effect of
type of data (F1B1), and a trend to an interaction, F1(4, 200)$2.17, pB.1.
This pattern of results indicates that the size of the frequency effect
decreased with grade in both the children and the model in a similar
manner, and that the frequency effect on RTs was smaller in the model than
the effect found in children.
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SOM’s contribution

Our modelling approach consisted of building lexical representations via a
series of learning stages using a self-organising map algorithm (SOM). This
learning model was combined with the interactive activation model (IAM) in
order to generate read-out for lexical decision RTs and errors. The question

Figure 2. Behavioural and simulated (SOM&IAM) effects of word frequency (HF$high

frequency; LF$low frequency) and orthographic neighbourhood (number of orthographic

neighbours: HN$high; LN$low) on percentage errors (error bars represent standard errors).
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to be examined now is the extent to which the fit with the behavioural data
is driven by the weight adjustment procedure of SOM, or by the architecture
and read-out mechanisms of the IAM. In order to dissociate SOM’s
contribution from the IAM, we compared the performance of the
SOM&IAM model with two versions of IAM: one with the standard
slot-based letter coding scheme (McClelland & Rumelhart, 1981), and the
other with our open-bigram coding scheme for input. In these two models,
connection weights between input and word-level representations did not
vary as a function of word frequency and were set using the standard
parameter values of the IAM. Frequency was coded in terms of variations of
resting level activations of word representations, calculated using the
cumulative word frequencies across grades as provided by Manulex.

Figure 3. Behavioural and simulated (SOM&IAM) effects of word frequency (HF$high

frequency; LF$low frequency) and orthographic neighbourhood (number of orthographic

neighbours: HN$high; LN$low) on RTs (error bars represent standard errors).
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Performance of these three models (slot-code IAM, open-bigram IAM,
SOM&IAM) was compared by computing correlations on means per item
per grade (N$280) for model and children. It can be seen in Table 2 that
the open-bigram code version of IAM performed better than the classic
slot-code version, hence providing additional support for this type of flexible

Figure 4. Behavioural and simulated effect size of word frequency on errors and RTs (error bars

represent standard errors).
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letter position coding scheme. Most important, the weight adjustment
procedure of the SOM produced stronger correlations than the frequency-
adjusted resting-level activation model, with everything else being equal
between these two models.

The fact that SOM outperformed the standard IAM, with resting-level
activations varying as a function of cumulative frequency, is evidence that
the pattern of effects found in children is not simply a direct reflection of
how cumulative frequency varies across grade level. Indeed, if we plot the
actual cumulative frequency values of the low and high frequency words
tested in the present study as a function of grade level then we see a much
faster rise in cumulative frequency for high frequency words compared with
low frequency words. Therefore a simple measure of cumulative frequency
would incorrectly predict an increase in the size of the word frequency effect
across grade level.

GENERAL DISCUSSION

The present study provides an empirical and theoretical analysis of the
development of the word frequency effect during reading acquisition.
Children in Grades 1!5 were shown high-frequency and low-frequency
words in a lexical decision task. Lexical decision performance was found to
be significantly more accurate for high-frequency than for low-frequency
words, and the size of the word frequency effect decreased significantly with
age. Our results show that word frequency has a strong impact on visual
word recognition right from the very first phases of reading acquisition. The
behavioural experiment also examined effects of orthographic neighbour-
hood density but this variable did not significantly affect lexical decision
performance in the present study.

A simulation study with a self-organising map (SOM; Kohonen, 1982)
successfully simulated the main pattern of effects found in the behavioural
experiment. The model comprises an orthographic input layer that codes the
identity and relative positions of letters in the stimulus input (open-bigram

TABLE 2
Correlation between behavioural and simulated results (IAM slot code; IAM open
bigram code; SOM&IAM open bigram code) for reaction time measures (RT) and

error percentages (Err), with p-levels in parentheses

SOM&IAM open bigram code

IAM slot code

(RT)

IAM open bigram

code (RT) (RT) (Err)

Correlation .13 (.02) .23 (B .001) .40 (B .001) .47 (B .001)

DEVELOPMENT OF VISUAL WORD RECOGNITION 687

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
D
u
f
a
u
,
 
S
t
é
p
h
a
n
e
]
 
A
t
:
 
1
1
:
2
5
 
2
1
 
J
u
l
y
 
2
0
1
0



coding: Grainger & van Heuven, 2003; Grainger & Whitney, 2004), and a
‘‘lexical’’ layer that assigns a single node to a given recurring input pattern.
The model was trained with an ecologically valid corpus extracted from
textbooks used to teach reading in French primary schools. The same
textbooks were used to estimate word frequency as manipulated in the
behavioural experiment. In order to simulate performance in a lexical
decision task, the SOM model was combined with an interactive-activation
model (IAM) in order to generate response read-out in terms of predicted
RTs and errors. The SOM was used to determine the bigram-word weight
values in the IAM. ANOVAs performed on the simulated RTs and errors
showed exactly the same pattern as the ANOVAs performed on the
behavioural data. Most strikingly, the model accurately simulated the
word frequency effect and the interaction between frequency and grade in
children. That is, the model correctly showed a diminishing effect of word
frequency as a function of simulated number of years of learning to read.
Furthermore, the nonsignificant effect of orthographic neighbourhood size
found in the simulation results is also in line with the pattern found in the
behavioural experiment. The good fit between the model and data, in
particular the fact that the model captured the main effects of frequency and
grade as well as the evolution of frequency effects with age, suggests that a
significant part of learning to read words involves the kind of self-organised
learning mechanisms that are implemented in our model. It is important to
note that our simulation study allowed us to demonstrate that the weight-
adjustment algorithm of the SOM outperforms a simple frequency-adjusted
resting level activation mechanism.

Our model was trained to associate specific combinations of letter
sequences (coded as sets of contiguous and noncontiguous bigrams) with
a unique higher level category representation (lexical nodes). These lexical
category nodes therefore implement a level of whole-word orthographic
representations (orthographic word forms). In the earliest phases of
learning, a single lexical representation is activated by the different words
that are presented to the model. However, as more and more words are
presented to the network, the mapping between orthographic input and
lexical representations becomes less and less ambiguous as a function of the
number of times a word is presented. By the end of simulated Grade 1, a
stable mapping begins to emerge between the orthographic input and higher
level lexical representations such that a majority of the words that have been
presented to the network now correctly activate a distinct lexical representa-
tion (one-to-one mapping). However, some words in the Grade 1 pool still
have an ambiguous one-to-many mapping from lexical representation to
input representation. It is these words that generate an error in the simulated
performance of children’s lexical decision accuracy. What is critical in the
simulation results is that the number of errors is shown to depend
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significantly on word frequency in Grade 1, and that this influence of word
frequency diminishes as reading experience increases. Basically, the model’s
performance to high frequency words asymptotes quite quickly, whereas
performance to low frequency words develops more slowly. This is a direct
result of the algorithm used to adjust connection strengths in the model as a
function of exposure to a given input. As the weights get closer to their
maximum value (1.0 in the present simulations), the change in weight
becomes smaller such that with unlimited exposure the weight value
converges asymptotically to its maximum value. This is a feature shared
by many neural networks, with the consequence that weight changes are
relatively large in initial phases of learning and gradually diminish with more
and more training.

Our self-organising model of orthographic learning generated a develop-
mental pattern that provided a very good fit with the learning curve found in
children between Grades 1 and 5. Moreover, this good fit with the empirical
data was obtained with a realistic exposure of the model (in terms of number
of epochs) to an ecologically valid training corpus. The relative success of the
SOM contrasts with the difficulty of backpropagation networks to generate
plausible developmental patterns (Hutzler et al., 2004). In contrast to
backpropagation models (Harm & Seidenberg, 1999, 2004; Plaut et al., 1996;
Seidenberg & McClelland, 1989), there are no hidden units in the SOM.
Nevertheless, the resulting map shows certain nonlinearities. For example, an
informal analysis of the different maps shows that words tend to be
topologically organised into similarity neighbourhoods, with clusters of
words on the map presenting a certain orthographic similarity. In spite of
this generality, in some cases words are located far from their expected
similarity cluster. Future research will explore the extent to which the
topographic structure of SOMs can capture effects of orthographic
similarity neighbourhoods in visual word recognition. This research should
apply more refined measures of orthographic similarity that go beyond the
simple N metric.

The idea that a significant part of the learning of orthographic
representations proceeds in an unsupervised fashion fits with current
accounts of skilled reading that propose a division of labour between
orthographic and phonological processes (Harm & Seidenberg, 2004), or
others that make a clear distinction between an orthographic and a
phonological pathway in skilled reading (Coltheart, Rastle, Perry, Langdon,
& Ziegler, 2001; Grainger & Ferrand, 1994; Grainger & Ziegler, 2007; Perry,
Ziegler, & Zorzi, 2007; Zorzi et al., 1998b). For example, Zorzi et al. (1998b)
have shown how a simple two-layered associative network using the
supervised delta learning rule can successfully learn regular sublexical
spelling-to-sound correspondences but a lexical procedure is needed to learn
irregular words. Our unsupervised SOM provides such a mechanism for
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learning whole-word orthographic representations that can then map onto
whole-word phonology via simple associative learning. This whole-word
route from orthography-to-phonology would allow accurate reading aloud
of irregular words. It is important to note that Li et al. (2004) have
successfully applied a SOM to the learning of phonological representations
of spoken words. Future research should therefore examine how our
orthographic learning map could be connected to a map of whole-word
phonological representations as in the Li et al. model.

Finally, the success of our model also provides indirect confirmation of
the role of some form of relative-position coding of letter position
information during the processing of orthographic information. Support
for this type of input coding was provided in our comparison of the
simulation results obtained with an open-bigram version of the IAM and the
standard slot-based coding scheme version of the IAM (McClelland &
Rumelhart, 1981). In future simulation work, we will examine whether our
SOM can capture some key phenomena observed with adult participants,
such as transposed-letter (Perea & Lupker, 2004; Schoonbaert & Grainger,
2004) and relative-position priming (Grainger et al., 2006; Peressotti &
Grainger, 1999; van Assche & Grainger, 2006).
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