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Dear editors, experts, 
 
Please find below our answer letter and our paper #93. 
 
Your insightful comments and suggestions allowed us to enhance the quality of this 
paper.  
 
In this revision, we provide improved simulations and a better discussion and 
conclusion, with a reference to the catastrophic forgetting effect. 
We think that our corrections answer most of your questions.  
 
Please find below answers to each of the reviewer’s concern. 
 
Sincerely yours, 
The Authors. 
 
-------------  to Reviewer 1 -------------- 
 
« Resistance to noise or extrapolation such as for instance when training with an 
incomplete set of bigrams is not tested » : 
 
This proposed test of network generalisation is beyond the scope of the present 
study. 
 
--------------- to Reviewer 2 ------------- 
 
a/ « The ART algorithm should be explicited / explicit what is novel is your 
algorithm » : 
 
We depicted more clearly the ART algorithm that we used. Nothing is novel compared to 
the original ART proposed by Grossberg in end of the 80’, taking advantage of hebbian 
rules without explicitely saying so. 
 
 
b/ « Is there a resetting mechanism or reset layer ? » : 
 
The optional RESET step is not used in our exp. 
 
 
c/ « section 5.4 seems to be important to demonstrate the mechanism underlying 
performance with the RAND condition. It should be more developped, since this may be 
important and have pedagogical applications, perhaps by putting it together with 
Fig.5. » : 
 
We completed the entropy analysis with mutual information integrating the joint 
entropy of words and bigramms distribution. We demonstrate that it is correlated with 
the children and ART performances. 
 
 
d/ The Chi2 have been completed by a correlation analysis. 
 
 
e/ "All French words can be coded onto such 1681-element vectors of open bigrams … 
represented is more appropriate than coded, since it is not invertible » 
 
It has been changed. 
 
 
f/ « The percentages in the plot seem to represent the std in ART performance » 
 
These Delta % have been removed, they were simply children – art results. 
 
 
g/ « Give the range of A and V where the fit is good » : 
 



 2

They have been added. 
 
 
i/ « The english level is fine, but re-reading by an english native reader would be 
better » : 
 
It has been done.  
 
----------- to Reviewer 3 ------------- 
a/ « Description of the learning algorithm, Step 3, 4, 6 and 7) Normalization with 
respect to what? » : 
 
The input vector Norm is 1. 
 
 
b/ « Step 3) Noise suppression: what kind of noise? Where does the noise come from? 
Fig. 2 is not very helpful: what the boxes W, X, U, V, P, Q represent remains 
elusive. » : 
 
The algorithm description has been clarified, because we do not use all ART 
normalisation and filtering processes. We depicted the exact used algorithm. 
 
 
c/ « Table 2 provides the Chi square statistics. Line 4, p. 14 indicate that these 12 
values indicate significant differences between RAND and SEQ performance. However, 
the authors do not interpret these Chi values in the remainder of the Ms. This might 
suffice and Table 2 deleted » : 
 
We did, and also present correlations between word frequency and recognition. 
 
 
d/ « The authors show an effect of word order. However, they show this only relative 
to a uniform, randomized distribution. The claim that word order plays a role could 
be shown may be more convincingly if the authors group the words in a higher order 
than present in the corpus. Performance of the network should then be even better 
than shown for the corpus order. The authors allude to this in the end of the 
discussion (p. 18), however, a demonstration would be more convincing » : 
 
We corrected the uniform randomized experiments, and added 3 other sequence types : 
sorted forward and sorted backward, and a bootstrap extension. 
 
 
e/ « It would be of interest to show a correlation between word frequency and word 
order effect, rather than a simple categorical difference between high and low 
frequency words » : 
 
We add this correlation analysis. 
 
 
f/ « Why is Entropy a good measure for word dispersion ? » : 
 
The higher the entropy is, the most the element are uniformely distributed (max of 
dispersion).  
 
 
g/ « For entropy, how the data were binned is not clear » : 
 
We computed this entropy on 32 bins, as mentioned in the caption. Thus the entropy H 
is 0 =< H =< log2(32)=5. We represent it distribution in [0 1 [ , [1 2[ … , [4 5[ 
intervalls.  
 
 
h/ « Is there a statistical difference between the Entropy of RAND and SEQ? Are there 
any statistical differences between the word dispersion at different grades? » : 
 



 3

This statistical difference is well demonstrated by the Mutual Information curves. 
 
 
i/ «  The postulated link between LTP and presentation order has to my mind no 
credibility whatsoever. Suggest deletion. » : 
It has been removed. 
 
 
j/ « The discussion is to my mind oversimplified: there is no semantic learning in 
the ART network. Nevertheless, the authors do not hesitate to directly compare 
orthographic word identification rates in ART with that in children (1st sentence in 
the Conclusion, p.17). However, in school children word recognition learning is not 
independent from semantic learning. A balanced and more cautious discussion of this 
issue would be helpful. » :  
 
The discussion has been corrected. 
  
k/ « Table 1: the terms ?high? and ?low neighborhood? need to explained. How ?high? 
and ?low? frequency words were quantified should also be explained. » : 
Some precisions have been added. 
----- end ---- 
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Abstract 
 

An ART (Adaptive Resonance Theory) network was trained to identify unique orthographic word forms. 

Each word input to the model was represented as an unordered set of ordered letter pairs (open-bigrams) 

that implement a flexible prelexical orthographic code. The network learned to map this prelexical 

orthographic code onto unique word representations (orthographic word forms). The network was trained 

on a realistic corpus of reading textbooks used in French primary schools. The amount of training was 

strictly identical to children’s exposure to reading material from grade 1 to grade 5. Network performance 

was examined at each grade level. Adjustment of the learning and vigilance parameters of the network 

allowed us to reproduce the developmental growth of word identification performance seen in children. 

The network exhibited a word frequency effect and was found to be sensitive to the order of presentation 

of word inputs, particularly with low frequency words. These words were better learned with a 

randomized presentation order compared with the order of presentation in the school books. These results 

open up interesting perspectives for the application of ART networks in the study of the dynamics of 

learning to read. 
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1. Introduction 

 Skilled reading involves the ultra-fast and highly efficient mapping of low-level visual information 

about written words onto high-level semantic and syntactic representations. One central component among 

the multiple operations involved in the reading process is the parallel mapping of abstract letter identities 

onto whole-word orthographic representations (Rayner & Pollatsek, 1989; Grainger, 2008). It is this 

specific mapping process, and how it is learned, that is the focus of the present study. 

 

Once the child has learned to map visual features onto abstract letter identities (see Grainger, Rey, & 

Dufau, 2008), one of the major challenges for the beginning reader is the processing of several letters in 

parallel. This processing of letters and letter combinations is thought to serve two purposes. Firstly, it 

enables the mapping of groups of letters (e.g., graphemes) onto phonology (e.g., phonemes), hence 

allowing the beginning reader to recover known phonological word forms and their associated meanings. 

This process is considered to be a key component in learning to read (Ziegler & Goswami, 2006). 

Secondly, given the clear information concerning word boundaries in printed text, it can be hypothesized 

that parallel processing of letter identities also provides a more direct, and therefore faster, route from 

visual information to semantics. This forms the basis of a generic dual-route approach to visual word 

recognition that has received much support in recent investigations of skilled reading (Coltheart, Rastle, 

Perry, Langdon & Ziegler, 2001; Diependaele, Ziegler, & Grainger, 2009; Perry, Ziegler, & Zorzi, 2007; 

Ziegler, Perry & Coltheart, 2003; Zorzi, Houghton & Butterworth, 1998). 

 

In the present study, we choose to focus on the unsupervised learning of orthographic word forms, 

which is at the heart of the direct route from visual information to semantics. The learning of orthographic 

word forms has largely been ignored up until now in computational investigations of the reading process. 

Many current computational models of visual word recognition are hard-wired and therefore choose to 

ignore issues of learning in order to focus on issues of performance. Furthermore, most models that have 

chosen to deal with issues of learning have opted for the back-propagation algorithm (Harm & 
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Seidenberg, 1999; Harm & Seidenberg, 2004; Plaut & al., 1996; Seidenberg & McClelland, 1989). 

However, back-propagation is developmentally implausible because a significant part of the learning-to-

read process proceeds without supervision (Share, 1995). Moreover, many studies observed that relatively 

few exposures to a word are sufficient for the acquisition of word-specific orthographic information (for 

review, see Share, 1995). However, the above cited back-propagation models need hundreds of exposures 

during training in order to obtain satisfactory learning performance (e.g., Hutzler et al., 2004). Finally, 

human learning is sequential, and back-propagation models typically encounter serious problems when 

trained with realistic sequential input (see McCloskey & Cohen, 1989). This problem is referred to as 

catastrophic interference, which reflects the fact that training on a new set of items may drastically disrupt 

performance on previously learned items.  

 

Given the above described shortcomings of previous models, the goal of the present study was to test a 

developmentally plausible model of orthographic word learning. The model should have the following 

features: 1) it should be able to learn in an unsupervised fashion; 2) it should be able to learn rapidly with 

only a few exposures to given word, and 3) it should be able to learn sequentially using realistic input (real 

text book materials). Because of these constraints, we turned to the Adaptive Resonance Theory (ART) as 

a potential candidate which might offer viable solutions to some of these problems.  

 

1.1. The Adaptive Resonance Theory (ART) 
 
 In the present research, Adaptive Resonance Theory (ART) is applied as a method for the 

unsupervised learning of orthographic word forms. ART provides a general theoretical framework for 

learning and plasticity that spans the neural and cognitive levels. ART has given birth to several 

algorithms ART1, ART2, ART3, ARTMAP and many derivatives such as FuzzyART, SMART. It has 

been successfully applied as a model of low-level perceptual phenomena, as well as higher-level cognitive 

processes such as attention, memory, and recognition (Carpenter & Grossberg, 1986a, 1986b), and speech 

perception (Grossberg et al. 1997). 
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The ART2 algorithm is applied in the present work because of its capacity to deal with analogue 

input code. Carpenter and Grossberg (1987) have demonstrated how the ART2 algorithm can solve the 

stability/plasticity dilemma, where the storage of new information does not systematically destroy 

previously learned information. ART networks have several attractive features for modeling cognitive-

level phenomena. First, ART is sensitive to the order in which data are presented, unlike many other 

neural network models.  Second, ART networks begin with minimal size, and expand as needed to learn a 

given task. Third, with ART, the stability-plasticity tradeoff can be explicitly controlled or manipulated. 

Capturing the inherent stability and plasticity of learning in biological systems, a challenge for many 

computational models, is ART’s foremost quality. Furthermore, ART is a member of a class of 

unsupervised learning algorithms, so there is no external signal or information to learn from. 

Consequently, this class of models can only learn the statistical regularities of the data themselves. Even 

though it is simple, unsupervised learning is powerful and plausible, and biological systems are known to 

learn from mere exposure to stimuli.  

 

1.2. The present study 
 
 The ART network was trained on a part of the Manulex corpus (Lété et al., 2004) which contains 

1.9 million words taken from 54 readers used in French primary schools between the first and fifth grades 

(age 6 until 11). To mimic the learning of orthographic wordforms through grade L1 to L5, one 

schoolbook was chosen by chance at each grade (“Gafi” and “Arthur”). In this study we keep only words 

of 4 and 5 letters. Thus there were 4872 words (858 different categories) in Grade L1 schoolbook, 6266 

(875) in L2, 8164 (1076) in L3, in 7158 (1077) in L4, and 8243 (1282) in L5. The model was then trained, 

word by word, either in the correct order (in the main simulations), in random order and in two 

deterministic sequences in which words are presented in a grouped fashion, either in ascending or in 

descending order of frequency (in further tests of the model). Each word input was initially coded as an 

unordered set of ordered letter pairs (open-bigrams), mimicking the type of approximate flexible coding 
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revealed by empirical investigations of orthographic processing (Grainger, 2008). An ART2 algorithm 

was then used to adjust connection strengths between the input code and a higher-level code that learns to 

represent orthographic word forms (i.e., sequences of letters that appear between spaces).  

 

There are several important novel aspects to the present work. First, we focus on unsupervised 

learning of orthographic word forms. Second, we use of a biologically inspired learning algorithm (ART). 

Third, we use of a realistic training corpus. Fourth, the present study provides an investigation of the 

importance of order of training on network performance. 

2. Methods 
 

2.1. The Orthographic Input Code 
 
 A key question in current research on visual word recognition concerns the precise nature of the 

orthographic input code (for review see Grainger, 2008). Although there is a general consensus that this 

code represents the identities of the word’s component letters, there is less agreement on how information 

about letter position is coded (Goswami & Ziegler, 2006). Empirical research applying a variety of 

paradigms has provided evidence for the existence of an approximate, flexible, prelexical orthographic 

code for printed words, designed to optimize the mapping of visual information onto semantics via 

orthographic word forms (e.g., Grainger et al., 2006; Schoonbaert & Grainger, 2004; Perea & Lupker, 

2004). There are various ways to implement this type of flexible prelexical orthographic code (e.g., Davis, 

1999; Gomez, Perea, & Ratcliff, 2008). In the present work, we opt for one particular solution, preferred 

by several investigators (Dehaene et al., 2005; Grainger & van Heuven, 2003; Whitney, 2001). This 

specific solution codes for combinations of letters in the correct order, without necessarily being adjacent 

– so called “open bigrams”. 

 

The input vector of our model represents every possible open bigram in French. This vector 

contains 1681 elements going from AA to ZZ, (41 orthographic signs (i.e., letters) in French including 

letters with accents). Elements along the vector code, in binary form, for presence (value = 1) or absence 
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(value = 0) of the corresponding open bigram. All French words can be coded onto such 1681-element 

vectors of open bigrams.  

For instance, open bigrams of TABLE are coded as follows: 

AA ... AB ... AE ... AL ... BE ... BL ... LE ... TA ... TB ... TL ... ZZ 

0 1 1 1 1 1 1 1 1 1 0 

 

After having chosen open bigram coding, we further included plausible visual constraints on our 

coding. Here we apply the empirical results of a study investigating variations in letter visibility in five 

and seven letter words (Stevens & Grainger, 2003). These authors found that recognition probability of a 

letter depends on its position in a word. The values obtained for 5 and 7-letter strings were extrapolated in 

order to obtain values for all word lengths processed in our model. These coefficients were used to 

modulate the binary values of the input vector, as a function of the position-in-word of each individual 

letter of an input bigram. The activation value of a bigram is equal to the average recognition probability 

of its component letters.  

 

 In sum, an input for a word is a 1681-element vector of recognition probabilities of corresponding 

bigrams which both take into account their presence or absence, and also how their recognition probability 

is modulated by visual processing. One of the main properties of these input vectors are their low density; 

for example, a ten-letter word has only 27 non-zero elements. As we will see, this characteristic of inputs 

influences the choice of ART2 parameters. 
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2.2. ART implementation 
 
 The ART2 architecture consists of a superposition of two layers of representations, F1 the bigram 

level (i.e., a prelexical orthographic code), and F2 the lexical level (i.e., orthographic word forms), as 

represented in Fig. 1. 

 

Figure 1: Representation of the information stored in F1 and F2. Each unit in F1 is associated, by 

bottom-up and top-down connections with one open bigram. French has 41 distinct letters when including 

letters with accents, giving rise to 1681 (41x41) open bigrams. A word such as TABLE activates 9 units in 

F1. In F2, each unit is associated with one or many word(s). 

 

2.3. The Learning (L) and Vigilance (V) ART parameters 
 

 When ART is presented with a new data pattern, it can do one of two things: recognize it as a 

member of a category it already knows, or learn it as a new category if it is sufficiently different from 

anything seen so far. Each category is associated with a neuron. Thus in ART, recognizing a new category 

is synonymous to adding a new neuron. A parameter called Vigilance (V) controls how different an 

incoming pattern must be in order to be considered as belonging to a new, unseen category. If vigilance is 

low, different input patterns tend to be grouped together using only a few (maybe even only one) very 

broad categories. At the other end of the spectrum, if vigilance is very high, incoming data patterns are 

F2 word  category layer 

F1 input layer (bigram vector G) 
aa ab ac zz

table chair apple 

. . .

. . .
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always considered as coming from a different category, and thus all individual patterns are memorized, 

resulting in poor generalization. Intermediate values allow similar items to be classified as belonging 

together, while maintaining the ability to create new categories for items that are sufficiently different. 

 

When a data pattern is recognized as belonging to a certain category, the weights of the associated 

category are modified by a certain amount in the direction of the newly presented data. These weights can 

be conceptualized as representing a prototype of the category. The amount by which weights associated 

with a given category are modified is controlled by a second ART parameter called Learning (L). This is 

akin to the concept of learning rate in other models. A high value of the learning parameter can result in 

possibly fast learning, but might also be potentially unstable and non-converging. Lower values of the 

learning parameter improve convergence and stability, at the cost of a slower learning process. 

 

2.4. The ART Algorithm 
 

 The ART Learning Algorithm, with its topology represented in Fig. 2, is summarized below (more 

details can be found in Grossberg, S., Boardman, I., & Cohen, M. 1997). The main connections are the 

bottom-up connections bij, from cells Gi to cells Cj, and the respective top-down connections tji. 
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Figure 2: The ART architecture with open bigrams (F1) and words (F2). Activities in F1 are the result of 

activities Gi of the word inputs, according to a winner-take-all competition and update of bottom-up and 

top-down connections. The number of recruited categories Cj in F2 varies from one to the number of 

presented inputs. 

 

Here is a summary of the ART algorithm: 

- Step 1. Initialization: All connections bij and tij, and F2 activations and d are set to zero. 

- Step 2. Get the current data sample, i.e. the bigram representation of the current word is the input vector 

pattern G in F1, with norm(G) = 1. 

- Step 3. If F2 is empty then create a category (Step 5), otherwise activate the categories for G in F2 

through bottom-up connections by:           yj = bij.Gi  ,        for all j in F2. 

- Step 4. Winner-takes-all competition: The candidate unit (called J), in order to learn the input pattern G, 

is the one that maximizes yj. Its activation is d = max(yJ).  

If d > V (the vigilance parameter), go to step 5, otherwise go to step 6. 

- Step 5. Update weights for the candidate unit yJ : 

tji = L.Gi + (1 - L).tji  , and  bij = L.Gi + (1 - L).bji  ,  for all i,  

where L is the learning rate. 

- Step 6. Repeat from step 2 for all input patterns. 

Input word bigram representation (G) 

. . .
F1 : bigram 
layer,Gi, 
0 <i<1682 

. . .

F2 : word  layer, Cj 

bij tji 
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We process this algorithm only once, from the first to the last word instance of the sequence. Each 

word instance has an index position in the sequence, from 1 to the length T of the sequence. Thus for one 

grade level, we present T inputs to the network. After training, the learned categories are memorized with 

their activities in the F2 layer. The number of learned categories (C) can vary between 1 and T. A perfect 

learning is achieved if C equals the number of different words in the sequence. After training, we consider 

that a word is learned (or correctly activated), if its last instance in the sequence has not been recruited by 

another word. Thus, we can compute the percent of Correct Word Identification (CWI) for different 

sequences. 

3. Results 
 
 

The ART network model was trained using the same school books that children are exposed to in 

French primary schools. The mean percentage correct response for the model was given as the percentage 

of presented words that were correctly activated for their last presentation at each grade. We then analyzed 

the average percentage correct scores at each grade level for different V and L parameters. 

3.1 Comparison with empirical children behavioral data  
 

The trained network was evaluated against the data of an empirical study investigating the 

development of word identification accuracy from grade 1 to grade 5 in French primary school children. 

These children learned to read using the same textbooks that were used to train the model. The results of 

the behavioral study are taken from Lété et al. (2009) and reported in Table 1. The study manipulated 

word frequency and word similarity. Word similarity is expressed in terms of orthographic neighborhood 

(words that differ from another by one letter).  
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Table 1:Behavioral results. Mean correct response percentages on words from grade 1 (L1 or “CP”) 

through grade 5 (L5 or “CM2”). Standard deviations in parentheses; HF, high frequency; LF, low 

frequency; HN; high neighborhood; LN, low neighborhood. 

Grade Level HF-HN  HF-LN  LF-HN  LF-LN 

L1 (CP)   84 (13)  79 (15)  54 (18)  46 (17) 

L2 (CE1)  91 (7)   89 (13)  70 (16)  62 (17) 

L3 (CE2) 96 (7)   94 (9)   78 (11)  74 (14) 

L4 (CM1)  94 (7)   94 (7)   81 (10)  82 (12) 

L5 (CM2)  99 (4)   98 (5)   84 (12)  85 (12) 

 

These behavioral scores are also shown in Fig. 3, along with the model’s performance for a given 

combination of V and L parameters that allowed the model to reproduce the empirical learning curve. 

Given these satisfactory fits, we felt no need to overfit V and L parameters using LMS criteria. We get 

similar ART results in the ranges 0.85 < V < 0.92 and 0.35 < L < 0.45. 

 

 

Figure 3: ART simulation (at L=0.4 and V=0.9) results as percent of Correct Word Identification (CWI), 

over the 5 grade levels L1 to L5 (French primary education), resulting in performance matched to that 

observed in children that are also represented here in in dashed ‘- -’ with their std. ART trained on initial 

sequence ‘SEQ’ is represented by ‘o-‘, and ART on RAND sequences by ‘__’. 
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3.2. Testing ART’s sensitivity to word order 
 

In this section, we compare network performance following training with words presented in the 

order they appear in textbooks (this initial sequence is called the “SEQ” sequence in the following 

sections), versus training on the same word set but presented in random order (“RAND” sequence), or 

sorted sequences (“SORT” as defined in section 3.4). 

The random sequences were simply built as follows. We randomized, at each grade level, the order 

of words extracted from the corpus. Five random sequences were created for each level. The results are 

given in Fig. 4 for different L and V parameter settings. Comparing the SEQ and RAND word recognition 

performance over 12 networks for all the words, we see that RAND sequences significantly outperform 

SEQ and SORT sequences. 
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Figure 4: Percent Correct Word Identification (CWI) of ART model, from level L1 to L5, and for different 

L and V parameters, trained on the original sequence SEQ (‘- -’), or on the 5 random sequences (average 

values ‘__’ with std), or on sorted SORT (‘-> -‘) versus SORT REVERSE (‘-<-‘) sequences.  
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3.3. High frequency word learning is less sensitive to word order 
 

A test was performed separately for different word frequency intervals. Ten intervals were 

computed, from word frequencies of -4 to -2 (in log10 scale). The Fig. 5 shows the distribution of word 

frequency values and the corresponding Correct Word Identification rates of the model on SEQ and 

RAND sequences, averaging across all grade levels. This analysis demonstrates that word order has the 

biggest impact on network performance with Low Frequency words. 

 

Figure 5: Top Global word frequency distribution across all grade levels and respective Percent Correct 

Word Identification (CWI) of ART model (V=0.9, L= 0.4), on the original sequence SEQ (‘-*-’), or one 

random RAND sequences (‘__’). Most of the word categories are infrequent. The CWI is higher for RAND 

than for SEQ for these infrequent words. Thus ART trained on RAND has in average a higher CWI than 

when trained on SEQ. 
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3.4. Learning on sorted word instances 
 

The previous section has demonstrated an effect of word order on network learning by comparing 

randomized sequences with the sequences found in school books.  As a further investigation of the effects 

of word order, we trained the model with even more orderly sequences than found in the school book 

corpus. We chose to study the two extreme sequences. The first, that we call the sequence « SORT », 

involves presenting each word instance in only one shot1. The repeated word sequences are ordered from 

the shortest to the longest (i.e., from the lowest to the highest frequency), so we have:  

SORT = [ W1,1 W2,1 W3,1 W3,2  W3,3  W4,1  W4,2  W4,3  W4,4  W5,1 W5,2 W5,3 W5,4 … ], where Wp,q is the qth 

instance (or sample) of the word Wp .  

 The second sequence is called « SORT-REVERSE ». It is the same as the SORT sequence, but in 

reverse order, with high frequency words appearing before low frequency words, so we have:  

SORT_REVERSE = [ … W5,4 W5,3 W5,2 W5,1,W4,4 W4,3 W4,2 W4,1  W3,3  W3,2  W3,1  W2,1  W1,1 ].  

We see in Fig. 4 that the sequences SORT and SORT_REVERSE have nearly the same scores, 

with SORT better than SORT_REVERSE for low V (and vice-versa). Except for high V, the network 

performs worse with all of these higher order sequences compared with the RAND and SEQ orders.  

4. Discussion 
 
 

In the present study we have shown that Adaptive Resonance Theory (ART) provides a viable 

framework for modeling the implicit learning of orthographic word forms. Our implementation of ART 

demonstrated rapid learning of orthographic word forms from an approximate, flexible, prelexical 

orthographic input code (open-bigrams – Grainger & van Heuven, 2003). Most important, the results of 

training the network on a realistic training regime (i.e., reading textbooks used in primary education) 

revealed a developmental pattern that mimicked that seen with children (Lété et al., 2009). Not 

surprisingly, the model showed two other key properties – a sensitivity to word frequency and a sensitivity 

to order. 

                                                 
1 We call a « shot » a continuous repeated presentation of all the instances of a word. 
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The simulations show that ART reproduces the classic word frequency effect - the fact that words 

that occur more frequently in a given language are processed more rapidly and more accurately than 

words that occur less frequently (e.g., Balota & Chumbley, 1984; Rubenstein, Garfield, & Millikan, 

1970). More interesting, perhaps, is that in our ART network, speed and success of learning not only 

depended on frequency of presentation to the network, but also on the order of presentation.  

 

Learning low-frequency words was more successful when these words were presented to the 

network in a randomized presentation compared with the order they appear in the school textbooks. In 

fact, simulation results suggest ART performs best when words are regularly repeated instead of being 

presented in a grouped fashion. This effect is reminiscent of catastrophic interference where unseen items 

tend to be forgotten. Uniform random distributions tend to make words repeat regularly, and thus less 

likely to be forgotten. It is important to note however, that ART still retains some knowledge of words 

even in the extreme conditions (SORT and REVERSE SORT), and thus is still somewhat resistant to 

catastrophic interference.  

 

4.1. Word dispersion analyses 
 

In order to quantify the distribution of word instances, we analyzed, for each word, the entropy of 

the positions of its occurrences. A word position is its index in the sequence: an integer between 1 and the 

length of the sequence. The entropy is computed over 32 bins, thus H ≤ 5=log2(32) bits. The results are 

given for each bit interval in Fig. 6, for sequences SEQ and RAND, in grade level L1. We see that H ≤ 1 

for 55% of the words of the SEQ sequence, compared to 43% for the RAND condition, with identical 

word frequencies. Respectively, RAND sequences have more words than SEQ with H > 1.  
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Figure 6: Histograms of the entropy H of the positions of each instance of each word in the sequence SEQ 

(left blue bars), and in the five RAND sequences (right red bars), on grade L1. This entropy is computed 

considering the positions of all the instances of a given word over 32 bins, thus H ≤ 5 (see details in 

section 4.1). 

 

Similar results are obtained on other levels. They reveal that some word instances tend to be 

grouped together in the school book corpus (SEQ), significantly more so than would occur by chance, 

such that repetition lag can be very large in certain conditions. 

 

4.2. Sequence structure analysis by local mutual information 
 

In this section, we investigate sentence structure using local mutual information. For each word W, 

the input vector G is the recognition probabilities of corresponding bigrams. In a window of n consecutive 

samples [W1 , …, Wn ] of a sequence S, we can approximate local mutual information at position p as 

follows:  

MI[ Sp, Sp+n ] ( W; G ) = H( G(Sp, Sp+n ) ) – H( G(Sp, Sp+n)  | W(Sp, Sp+n) ). 
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We compute MI over windows of 8 consecutive samples, shifted of one. Then we average this 

local MI measure over 500 consecutive samples, yielding an Average Mutual Information (AMI) measure 

for the position t in the sequence:  

AMI(S, t) = 1/500 ∑p=1,..,500 ( IM[ S(t+p), S(t+p+8) ] ( W; G ) ). 

Note that, for large n, two sequences having the same word frequencies have similar local MI. We 

represent in Fig. 7 AMI for the school book sequence SEQ, and for one of the RAND sequences. We see 

that AMI(RAND,t) is nearly constant. In contrast, AMI(SEQ,t) varies and its strongest variations are 

observed at times t= 1, 21, corresponding in the book sequence to some grouped word repetitions.  
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Figure 7: Average Mutual Information AMI(S, time) for the sequence SEQ (‘ -*’) and for one of the RAND 

sequence (‘__‘) measured in bits. Vertical lines represent the end of each grade level.  

 

Interestingly, the ranks of the AMI and of the CWI are the same, we have:  

AMI(SORT) < AMI(SEQ) < AMI(RAND) , and  CWI(SORT)  < CWI(SEQ) < CWI(RAND). 
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This suggests that the local mutual information criterion correlates well with word identification: 

words are better identified in a sequence that maximizes the mutual information of local stimuli. Further 

research will be conducted on this effect of sequence structure. 

 

4.3. ART parameters and sequence order 
 

Furthermore, our simulations revealed an interaction between the values of the learning parameters 

and presentation order on performance scores. When presentation order was based on order in the corpus, 

performance varied depending on V and L. In contrast, when presentation order was randomized, learning 

of infrequent words was improved. 

These results suggest (1) that order of presentation is important especially for learning low 

frequency words, and (2) that L and V may mediate or control how ART can capitalize on this effect of 

order. We can further speculate on what parameters L and V might correspond to in children, but clearly 

they are interesting candidates to explain some of the variability observed in empirical data. Differences in 

these parameters could reflect individual differences and/or intra-individual variations in vigilance 

(arousal and attention) and readiness for learning. Future work could formally investigate these 

possibilities. This future research should also investigate to what extent the sensitivity of ART to order of 

presentation might be a good candidate for capturing empirical effects related to the age at which words 

are first learned (Age-of-Acquisition). 

 

5. Conclusion 

 

The ART network was shown to accurately reproduce the developmental pattern of word identification 

performance seen in children, for a specific combination of the learning and vigilance parameters in the 

model. The network reproduced the standard word frequency effect, and revealed a sensitivity to order of 

presentation of word stimuli. Word learning, particularly for low frequency words, was much improved 

when words were presented uniformly compared with the order in which they occur in reading textbooks. 
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An analysis of the distribution of words in the reading corpus revealed a systematic grouping of low 

frequency words, having a smaller dispersion than high frequency words.  

 

This raises the interesting possibility that order of presentation of words in current textbooks is 

suboptimal. From this point of view, ART might prove useful as a tool for evaluating school textbooks, by 

searching for optimal orders of presentation that would provide a benchmark for such evaluation. 
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